• Sat. Sep 24th, 2022

GO INFO site

Just another INFO site

Biogas upgrader


Jan 11, 2022

A biogas upgrader is a facility that is used to concentrate the methane in biogas to natural gas standards. The system removes carbon dioxide, hydrogen sulphide,[1]water and contaminants from the biogas. One technique for doing this uses amine gas treating. This purified biogas is also called biomethane. It can be used interchangeably with natural gas.

Raw biogas produced from digestion is roughly 60% methane and 29% CO2 with trace elements of H2S; it is not high quality enough to be used as fuel gas for machinery. The corrosive nature of H2S alone is enough to destroy the internals of a plant.

Component Range Average
Methane 45–70% 60%
Carbon dioxide 25–55% 35%
Water vapour 0–10% 3,1%
Nitrogen 0,01–5% 1%
Oxygen 0,01–2% 0,3%
Hydrogen 0–1%
Ammonia 0,01–2,5 mg/m3 0,7 mg/m3
Hydrogen Sulphide 0–30’000 mg/m3 500 mg/m3

The solution is the use of biogas upgrading or purification processes whereby contaminants in the raw biogas stream are absorbed or scrubbed, leaving more methane per unit volume of gas. There are four main methods of upgrading: water washing, pressure swing adsorption, selexol adsorbtion, and amine gas treating.

. . . Biogas upgrader . . .

The most prevalent method is water washing whereby high pressure gas flows into a column in which the carbon dioxide and other trace elements are scrubbed by cascading water running counter-flow to the gas. This arrangement can deliver 98% methane with manufacturers guaranteeing maximum 2% methane loss in the system. It takes roughly between 3% and 6% of the total energy output in gas to run a biogas upgrading system

A typical PSA system for biogas will have four stages, one each for water vapor, carbon dioxide, nitrogen and oxygen.[2] Gas to be upgraded enters each vessel, is compressed to a high pressure whereby the gas to be removed is adsorbed on to the surface of the adsorbent, and is then decompressed allowing the methane to leave. The adsorbent is then regenerated. For oxygen, molecular sieve is used, for nitrogen a zeolite, for carbon dioxide and water a zeolite or activated carbon.

In the Selexol process (now licensed by UOP LLC), the Selexol solvent dissolves (absorbs) the acid gases from the feed gas at relatively high pressure, usually 300 to 2000 psia (2.07 to 13.8 MPa). The rich solvent containing the acid gases is then let down in pressure and/or steam stripped to release and recover the acid gases. The Selexol process can operate selectively to recover hydrogen sulfide and carbon dioxide as separate streams, so that the hydrogen sulfide can be sent to either a Claus unit for conversion to elemental sulfur or to a WSA Process unit for conversion to sulfuric acid while, at the same time, the carbon dioxide can be sequestered or used for enhanced oil recovery.

Selexol is a physical solvent, unlike amine based acid gas removal solvents that rely on a chemical reaction with the acid gases. Since no chemical reactions are involved, Selexol usually requires less energy than the amine based processes. However, at feed gas pressures below about 300 psia(2.07 MPa), the Selexol solvent capacity (in amount of acid gas absorbed per volume of solvent) is reduced and the amine based processes will usually be superior.

. . . Biogas upgrader . . .

This article is issued from web site Wikipedia. The original article may be a bit shortened or modified. Some links may have been modified. The text is licensed under “Creative Commons – Attribution – Sharealike” [1] and some of the text can also be licensed under the terms of the “GNU Free Documentation License” [2]. Additional terms may apply for the media files. By using this site, you agree to our Legal pages . Web links: [1] [2]

. . . Biogas upgrader . . .